Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38325908

RESUMO

OBJECTIVES: Single-cell and spatial transcriptomics analysis of human knee articular cartilage tissue to present a comprehensive transcriptome landscape and osteoarthritis (OA)-critical cell populations. METHODS: Single-cell RNA sequencing and spatially resolved transcriptomic technology have been applied to characterise the cellular heterogeneity of human knee articular cartilage which were collected from 8 OA donors, and 3 non-OA control donors, and a total of 19 samples. The novel chondrocyte population and marker genes of interest were validated by immunohistochemistry staining, quantitative real-time PCR, etc. The OA-critical cell populations were validated through integrative analyses of publicly available bulk RNA sequencing data and large-scale genome-wide association studies. RESULTS: We identified 33 cell population-specific marker genes that define 11 chondrocyte populations, including 9 known populations and 2 new populations, that is, pre-inflammatory chondrocyte population (preInfC) and inflammatory chondrocyte population (InfC). The novel findings that make this an important addition to the literature include: (1) the novel InfC activates the mediator MIF-CD74; (2) the prehypertrophic chondrocyte (preHTC) and hypertrophic chondrocyte (HTC) are potentially OA-critical cell populations; (3) most OA-associated differentially expressed genes reside in the articular surface and superficial zone; (4) the prefibrocartilage chondrocyte (preFC) population is a major contributor to the stratification of patients with OA, resulting in both an inflammatory-related subtype and a non-inflammatory-related subtype. CONCLUSIONS: Our results highlight InfC, preHTC, preFC and HTC as potential cell populations to target for therapy. Also, we conclude that profiling of those cell populations in patients might be used to stratify patient populations for defining cohorts for clinical trials and precision medicine.

2.
Nat Commun ; 14(1): 5675, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709743

RESUMO

Understanding of the molecular drivers of lineage diversification and tissue patterning during primary germ layer development requires in-depth knowledge of the dynamic molecular trajectories of cell lineages across a series of developmental stages of gastrulation. Through computational modeling, we constructed at single-cell resolution, a spatio-temporal transcriptome of cell populations in the germ-layers of gastrula-stage mouse embryos. This molecular atlas enables the inference of molecular network activity underpinning the specification and differentiation of the germ-layer tissue lineages. Heterogeneity analysis of cellular composition at defined positions in the epiblast revealed progressive diversification of cell types. The single-cell transcriptome revealed an enhanced BMP signaling activity in the right-side mesoderm of late-gastrulation embryo. Perturbation of asymmetric BMP signaling activity at late gastrulation led to randomization of left-right molecular asymmetry in the lateral mesoderm of early-somite-stage embryo. These findings indicate the asymmetric BMP activity during gastrulation may be critical for the symmetry breaking process.


Assuntos
Lateralidade Funcional , Gastrulação , Animais , Camundongos , Gástrula , Camadas Germinativas , Mesoderma
3.
Nat Commun ; 14(1): 4599, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524711

RESUMO

Mammalian embryos exhibit sophisticated cellular patterning that is intricately orchestrated at both molecular and cellular level. It has recently become apparent that cells within the animal body display significant heterogeneity, both in terms of their cellular properties and spatial distributions. However, current spatial transcriptomic profiling either lacks three-dimensional representation or is limited in its ability to capture the complexity of embryonic tissues and organs. Here, we present a spatial transcriptomic atlas of all major organs at embryonic day 13.5 in the mouse embryo, and provide a three-dimensional rendering of molecular regulation for embryonic patterning with stacked sections. By integrating the spatial atlas with corresponding single-cell transcriptomic data, we offer a detailed molecular annotation of the dynamic nature of organ development, spatial cellular interactions, embryonic axes, and divergence of cell fates that underlie mammalian development, which would pave the way for precise organ engineering and stem cell-based regenerative medicine.


Assuntos
Organogênese , Transcriptoma , Animais , Camundongos , Organogênese/genética , Perfilação da Expressão Gênica , Embrião de Mamíferos , Células-Tronco , Mamíferos
4.
Adv Sci (Weinh) ; 10(20): e2206307, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37323105

RESUMO

Single cell RNA-seq (scRNA-seq) profiles conceal temporal and spatial tissue developmental information. De novo reconstruction of single cell temporal trajectory has been fairly addressed, but reverse engineering single cell 3D spatial tissue organization is hitherto landmark based, and de novo spatial reconstruction is a compelling computational open problem. Here it is shown that a proposed algorithm for de novo coalescent embedding (D-CE) of oligo/single cell transcriptomic networks can help to address this problem. Relying on the spatial information encoded in the expression patterns of genes, it is found that D-CE of cell-cell association transcriptomic networks, by preserving mesoscale network organization, captures spatial domains, identifies spatially expressed genes, reconstructs cell samples' 3D spatial distribution, and uncovers spatial domains and markers necessary for understanding the design principles on spatial organization and pattern formation. Comparison to the novoSpaRC and CSOmap (the only available de novo 3D spatial reconstruction methods) on 14 datasets and 497 reconstructions, reveals a significantly superior performance of D-CE.


Assuntos
Análise de Célula Única , Transcriptoma , Transcriptoma/genética , Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Algoritmos
5.
Nat Methods ; 20(7): 1048-1057, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37231265

RESUMO

The brain is a complex tissue whose function relies on coordinated anatomical and molecular features. However, the molecular annotation of the spatial organization of the brain is currently insufficient. Here, we describe microfluidic indexing-based spatial assay for transposase-accessible chromatin and RNA-sequencing (MISAR-seq), a method for spatially resolved joint profiling of chromatin accessibility and gene expression. By applying MISAR-seq to the developing mouse brain, we study tissue organization and spatiotemporal regulatory logics during mouse brain development.


Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Camundongos , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA , Encéfalo , Expressão Gênica , Perfilação da Expressão Gênica
6.
Cell Regen ; 12(1): 5, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009950

RESUMO

The lung is the most critical organ of the respiratory system supporting gas exchange. Constant interaction with the external environment makes the lung vulnerable to injury. Thus, a deeper understanding of cellular and molecular processes underlying lung development programs and evaluation of progenitor status within the lung is an essential part of lung regenerative medicine. In this review, we aim to discuss the current understanding of lung development process and regenerative capability. We highlight the advances brought by multi-omics approaches, single-cell transcriptome, in particular, that can help us further dissect the cellular player and molecular signaling underlying those processes.

7.
Cell Regen ; 12(1): 15, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36949352

RESUMO

Spinal motor neurons deficiency results in a series of devastating disorders such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and spinal cord injury (SCI). These disorders are currently incurable, while human pluripotent stem cells (hPSCs)-derived spinal motor neurons are promising but suffered from inappropriate regional identity and functional immaturity for the study and treatment of posterior spinal cord related injuries. In this study, we have established human spinal cord neural progenitor cells (hSCNPCs) via hPSCs differentiated neuromesodermal progenitors (NMPs) and demonstrated the hSCNPCs can be continuously expanded up to 40 passages. hSCNPCs can be rapidly differentiated into posterior spinal motor neurons with high efficiency. The functional maturity has been examined in detail. Moreover, a co-culture scheme which is compatible for both neural and muscular differentiation is developed to mimic the neuromuscular junction (NMJ) formation in vitro. Together, these studies highlight the potential avenues for generating clinically relevant spinal motor neurons and modeling neuromuscular diseases through our defined hSCNPCs.

8.
Cell Rep ; 42(2): 112069, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753418

RESUMO

The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.


Assuntos
Neurônios , Núcleo Accumbens , Núcleo Accumbens/fisiologia , Neurônios/fisiologia , Motivação , Recompensa
9.
Genomics Proteomics Bioinformatics ; 21(1): 13-23, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35901961

RESUMO

Recent advances of single-cell transcriptomics technologies and allied computational methodologies have revolutionized molecular cell biology. Meanwhile, pioneering explorations in spatial transcriptomics have opened up avenues to address fundamental biological questions in health and diseases. Here, we review the technical attributes of single-cell RNA sequencing and spatial transcriptomics, and the core concepts of computational data analysis. We further highlight the challenges in the application of data integration methodologies and the interpretation of the biological context of the findings.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Análise de Dados , Análise de Célula Única
10.
Cell Rep ; 41(8): 111694, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417861

RESUMO

The establishment of a functional vasculature requires endothelial cells to enter quiescence during the completion of development, otherwise pathological overgrowth occurs. How such a transition is regulated remains unclear. Here, we uncover a role of Zeb1 in defining vascular quiescence entry. During quiescence acquisition, Zeb1 increases along with the progressive decline of endothelial progenitors' activities, with Zeb1 loss resulting in endothelial overgrowth and vascular deformities. RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin sequencing (ATAC-seq) analyses reveal that Zeb1 represses Wif1, thereby activating Wnt/ß-catenin signaling. Knockdown of Wif1 rescues the overgrowth induced by Zeb1 deletion. Importantly, local administration of surrogate Wnt molecules in the retina ameliorates the overgrowth defects of Zeb1 mutants. These findings show a mechanism by which Zeb1 induces quiescence of endothelial progenitors during the establishing of vascular homeostasis, providing molecular insight into the inherited neovascular pathologies associated with human ZEB1 mutations, suggesting pharmacological activation of Wnt/ß-catenin signaling as a potential therapeutical approach.


Assuntos
Células Endoteliais , beta Catenina , Humanos , beta Catenina/metabolismo , Células Endoteliais/metabolismo , Via de Sinalização Wnt/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
11.
Innovation (Camb) ; 3(6): 100342, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36353677

RESUMO

In recent years, more and more single-cell technologies have been developed. A vast amount of single-cell omics data has been generated by large projects, such as the Human Cell Atlas, the Mouse Cell Atlas, the Mouse RNA Atlas, the Mouse ATAC Atlas, and the Plant Cell Atlas. Based on these single-cell big data, thousands of bioinformatics algorithms for quality control, clustering, cell-type annotation, developmental inference, cell-cell transition, cell-cell interaction, and spatial analysis are developed. With powerful experimental single-cell technology and state-of-the-art big data analysis methods based on artificial intelligence, the molecular landscape at the single-cell level can be revealed. With spatial transcriptomics and single-cell multi-omics, even the spatial dynamic multi-level regulatory mechanisms can be deciphered. Such single-cell technologies have many successful applications in oncology, assisted reproduction, embryonic development, and plant breeding. We not only review the experimental and bioinformatics methods for single-cell research, but also discuss their applications in various fields and forecast the future directions for single-cell technologies. We believe that spatial transcriptomics and single-cell multi-omics will become the next booming business for mechanism research and commercial industry.

12.
Cell Rep ; 40(9): 111285, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044859

RESUMO

During mammalian embryogenesis, spatial regulation of gene expression and cell signaling are functionally coupled with lineage specification, patterning of tissue progenitors, and germ layer morphogenesis. While the mouse model has been instrumental for understanding mammalian development, comparatively little is known about human and non-human primate gastrulation due to the restriction of both technical and ethical issues. Here, we present a spatial and temporal survey of the molecular dynamics of cell types populating the non-human primate embryos during gastrulation. We reconstructed three-dimensional digital models from serial sections of cynomolgus monkey (Macaca fascicularis) gastrulating embryos at 1-day temporal resolution from E17 to E21. Spatial transcriptomics identifies gene expression profiles unique to the germ layers. Cross-species comparison reveals a developmental coordinate of germ layer segregation between mouse and primates, and species-specific transcription programs during gastrulation. These findings offer insights into evolutionarily conserved and divergent processes during mammalian gastrulation.


Assuntos
Embrião de Mamíferos , Camadas Germinativas , Animais , Embrião de Mamíferos/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/metabolismo , Macaca fascicularis , Mamíferos/genética , Camundongos , Transcriptoma
14.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35587592

RESUMO

Vascular establishment is one of the early events in embryogenesis. It is believed that vessel-initiating endothelial progenitors cluster to form the first primitive vessel. Understanding the molecular identity of these progenitors is crucial in order to elucidate lineage hierarchy. In this study, we identify protein C receptor (Procr) as an endothelial progenitor marker and investigate the role of Procr+ progenitors during embryonic vascular development. Using a ProcrmGFP-2A-lacZ reporter, we reveal a much earlier Procr expression (embryonic day 7.5) than previously acknowledged (embryonic day 13.5). Genetic fate-mapping experiments using ProcrCre and ProcrCreER demonstrate that Procr+ cells give rise to blood vessels throughout the entire embryo proper. Single-cell RNA-sequencing analyses place Procr+ cells at the start of endothelial commitment and maturation. Furthermore, targeted ablation of Procr+ cells results in failure of vessel formation and early embryonic lethality. Notably, genetic fate mapping and scRNA-seq pseudotime analysis support the view that Procr+ progenitors can give rise to hemogenic endothelium. In this study, we establish a Procr expression timeline and identify Procr+ vessel-initiating progenitors, and demonstrate their indispensable role in establishment of the vasculature during embryo development.


Assuntos
Hemangioblastos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/metabolismo , Hemangioblastos/metabolismo
15.
Protein Cell ; 13(11): 790-807, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35441356

RESUMO

Central to the core principle of cell theory, depicting cells' history, state and fate is a fundamental goal in modern biology. By leveraging clonal analysis and single-cell RNA-seq technologies, single-cell lineage tracing provides new opportunities to interrogate both cell states and lineage histories. During the past few years, many strategies to achieve lineage tracing at single-cell resolution have been developed, and three of them (integration barcodes, polylox barcodes, and CRISPR barcodes) are noteworthy as they are amenable in experimentally tractable systems. Although the above strategies have been demonstrated in animal development and stem cell research, much care and effort are still required to implement these methods. Here we review the development of single-cell lineage tracing, major characteristics of the cell barcoding strategies, applications, as well as technical considerations and limitations, providing a guide to choose or improve the single-cell barcoding lineage tracing.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Animais , Linhagem da Célula/genética
16.
Biophys Rep ; 8(3): 119-135, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37288247

RESUMO

Cells and tissues are exquisitely organized in a complex but ordered manner to form organs and bodies so that individuals can function properly. The spatial organization and tissue architecture represent a keynote property underneath all living organisms. Molecular architecture and cellular composition within intact tissues play a vital role in a variety of biological processes, such as forming the complicated tissue functionality, precise regulation of cell transition in all living activities, consolidation of central nervous system, cellular responses to immunological and pathological cues. To explore these biological events at a large scale and fine resolution, a genome-wide understanding of spatial cellular changes is essential. However, previous bulk RNA sequencing and single-cell RNA sequencing technologies could not obtain the important spatial information of tissues and cells, despite their ability to detect high content transcriptional changes. These limitations have prompted the development of numerous spatially resolved technologies which provide a new dimension to interrogate the regional gene expression, cellular microenvironment, anatomical heterogeneity and cell-cell interactions. Since the advent of spatial transcriptomics, related works that use these technologies have increased rapidly, and new methods with higher throughput and resolution have grown quickly, all of which hold great promise to accelerate new discoveries in understanding the biological complexity. In this review, we briefly discussed the historical evolution of spatially resolved transcriptome. We broadly surveyed the representative methods. Furthermore, we summarized the general computational analysis pipeline for the spatial gene expression data. Finally, we proposed perspectives for technological development of spatial multi-omics.

17.
Cell Prolif ; 54(8): e13096, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34240779

RESUMO

OBJECTIVES: PKM1 and PKM2, which are generated from the alternative splicing of PKM gene, play important roles in tumourigenesis and embryonic development as rate-limiting enzymes in glycolytic pathway. However, because of the lack of appropriate techniques, the specific functions of the 2 PKM splicing isoforms have not been clarified endogenously yet. MATERIALS AND METHODS: In this study, we used CRISPR-based base editors to perturbate the endogenous alternative splicing of PKM by introducing mutations into the splicing junction sites in HCT116 cells and zebrafish embryos. Sanger sequencing, agarose gel electrophoresis and targeted deep sequencing assays were utilized for identifying mutation efficiencies and detecting PKM1/2 splicing isoforms. Cell proliferation assays and RNA-seq analysis were performed to describe the effects of perturbation of PKM1/2 splicing in tumour cell growth and zebrafish embryo development. RESULTS: The splicing sites of PKM, a 5' donor site of GT and a 3' acceptor site of AG, were efficiently mutated by cytosine base editor (CBE; BE4max) and adenine base editor (ABE; ABEmax-NG) with guide RNAs (gRNAs) targeting the splicing sites flanking exons 9 and 10 in HCT116 cells and/or zebrafish embryos. The mutations of the 5' donor sites of GT flanking exons 9 or 10 into GC resulted in specific loss of PKM1 or PKM2 expression as well as the increase in PKM2 or PKM1 respectively. Specific loss of PKM1 promoted cell proliferation of HCT116 cells and upregulated the expression of cell cycle regulators related to DNA replication and cell cycle phase transition. In contrast, specific loss of PKM2 suppressed cell growth of HCT116 cells and resulted in growth retardation of zebrafish. Meanwhile, we found that mutation of PKM1/2 splicing sites also perturbated the expression of non-canonical PKM isoforms and produced some novel splicing isoforms. CONCLUSIONS: This work proved that CRISPR-based base editing strategy can be used to disrupt the endogenous alternative splicing of genes of interest to study the function of specific splicing isoforms in vitro and in vivo. It also reminded us to notice some novel or undesirable splicing isoforms by targeting the splicing junction sites using base editors. In sum, we establish a platform to perturbate endogenous RNA splicing for functional investigation or genetic correction of abnormal splicing events in human diseases.


Assuntos
Edição de Genes , Piruvato Quinase/metabolismo , Processamento Alternativo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação para Baixo , Éxons , Feminino , Células HCT116 , Humanos , Mutagênese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinase/genética , Regulação para Cima , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Cell Prolif ; 54(5): e13000, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33666296

RESUMO

OBJECTIVES: Mammalian spermatogenesis is a biological process of male gamete formation. Gonocytes are the only precursors of spermatogonial stem cells (SSCs) which develop into mature spermatozoa. DDX5 is one of DEAD-box RNA helicases and expresses in male germ cells, suggesting that Ddx5 plays important functions during spermatogenesis. Here, we explore the functions of Ddx5 in regulating the specification of gonocytes. MATERIALS AND METHODS: Germ cell-specific Ddx5 knockout (Ddx5-/- ) mice were generated. The morphology of testes and epididymides and fertility in both wild-type and Ddx5-/- mice were analysed. Single-cell RNA sequencing (scRNA-seq) was used to profile the transcriptome in testes from wild-type and Ddx5-/- mice at postnatal day (P) 2. Dysregulated genes were validated by single-cell qRT-PCR and immunofluorescent staining. RESULTS: In male mice, Ddx5 was expressed in germ cells at different stages of development. Germ cell-specific Ddx5 knockout adult male mice were sterile due to completely devoid of germ cells. Male germ cells gradually disappeared in Ddx5-/- mice from E18.5 to P6. Single-cell transcriptome analysis showed that genes involved in cell cycle and glial cell line-derived neurotrophic factor (GDNF) pathway were significantly decreased in Ddx5-deficient gonocytes. Notably, Ddx5 ablation impeded the proliferation of gonocytes. CONCLUSIONS: Our study reveals the critical roles of Ddx5 in fate determination of gonocytes, offering a novel insight into the pathogenesis of male sterility.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células Germinativas/metabolismo , Animais , Animais Recém-Nascidos , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células Germinativas/citologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Infertilidade/metabolismo , Infertilidade/patologia , Masculino , Camundongos , Camundongos Knockout , Análise de Sequência de RNA , Análise de Célula Única , Testículo/metabolismo , Testículo/patologia
20.
Cell Syst ; 11(6): 625-639.e13, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33278344

RESUMO

Determining genes that orchestrate cell differentiation in development and disease remains a fundamental goal of cell biology. This study establishes a genome-wide metric based on the gene-repressive trimethylation of histone H3 at lysine 27 (H3K27me3) across hundreds of diverse cell types to identify genetic regulators of cell differentiation. We introduce a computational method, TRIAGE, which uses discordance between gene-repressive tendency and expression to identify genetic drivers of cell identity. We apply TRIAGE to millions of genome-wide single-cell transcriptomes, diverse omics platforms, and eukaryotic cells and tissue types. Using a wide range of data, we validate the performance of TRIAGE in identifying cell-type-specific regulatory factors across diverse species including human, mouse, boar, bird, fish, and tunicate. Using CRISPR gene editing, we use TRIAGE to experimentally validate RNF220 as a regulator of Ciona cardiopharyngeal development and SIX3 as required for differentiation of endoderm in human pluripotent stem cells. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Epigenômica/métodos , Diferenciação Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA